
Sigian User Manual
Version 1.1.5

Page 2 of 18© Grégoire Meyer

Introduction

Installation

Thank you for downloading the Sigian Quality of life Improvements for Unity (or SQOLI)! This is the
User Manual, explaining in depth every feature available, as well as tips on how to use them, and
practical examples for newbies.

Please note the purpose of this “plugin” is to help game design students, if you’re a professional
gamedev or programmer, it has next to no use. Feel free to give it a go though.

Hopefully, you will find helpful features for faster prototyping, so it will be easier for you to test game-
play ideas, or make proper games in a short period of time.
Please note, the goal of SQOLI is to help you work better and faciliate scripting, not to do the work for
you. Half the fun of prototyping is solving technical problems!

If you encounter any unlikely bugs, want to suggest a feature for future updates, please hit me up on
Twitter @gregoire_meyer

Cheers,

1. Create a blank unity project.

2. Unzip the Sigian.zip archive

3. Place all content of the archive in the Assets folder of your Unity project (in the file
explorer, not in Unity)

4. Optional: move SigianLayout.wlt from EditorResources folder to Appdata/Roaming/
Unity/Editor-5.x/Preferences/Layouts

You’re good to go!

If you are updating from a previous version, just replace all files from Editor and Scripts/
[Sigian] with the new ones. Done.

Page 3 of 18© Grégoire Meyer

Chapter 1 : Utility Window, time
management and other things

General View

In this chapter we are going to explore the Sigian Utility Window, and what time management-related
features it has. For explanations on wizards, please read Chapter 2: Wizards.

To open the Utility Window, click on Sigian -> Utility Window on top of the screen. You can also use
the Sigian UI Layout provided.
This layout is optimized for maximum readability with SQOLI on a 1920*1080 screen.

Then, simply select the Sigian Layout with the Layout menu on top-right of the screen.

The Utility Window will be your main contact with the plugin features, especially if you are a game or
level designer on the project. Here is a global view of the window:

Play Button

Toolbar

Save Button

Timescale

Wizards

Session Timer

Page 4 of 18© Grégoire Meyer

Play Scene Button: Use this button to play, pause or stop scene. It has exactly the same effect as the
3 buttons on top of the screen, but are easier to reach. When the scene is playing, this button splits
into 2 for pausing and stopping.

Save your work Button: Use this button to save the scene. The Utility Window also has an autosave
feature, that is detailed later.

Timescale slider: Use this slider to adjust timescale in the scene. Very useful if you want to track
glitches and / or visual bugs, such as AnimationState-related issues. 1 is normal timescale, 0.5 is half
speed, etc…

Regroup selected in a parent Button: This button regroups all your selected GameObjects in a com-
mon parent. Bonus feature, if all your selected GameObjects are duplicated from a same object, SQO-
LI will detect it and rename the parent accordingly. It even detects architecture-related naming and
ignores it. For example, if all your selection is SM_Wall duplicates, and regroup them, the parent will
automatically be named Walls.
This action can also be achieved by pressing Ctrl + G.

The 5 other buttons (not counting Begin Session Timer Button) open wizards, that’s why they will be
detailed in Chapter 2.

Begin Session Timer: This button is a time management feature. If you are easily distracted or you
have issues with working, you can use this button. Once pressed, a gauge will appear, progressively
filling (default is 1 hour to fill). When full, a popup will appear congratulating you for working a whole
session. You can modify session length in the options.

Options

Page 5 of 18© Grégoire Meyer

Autosaving: enables or disables autosaving. When enabled, you can modify the autosave frequency
(here, every 10 minutes)

Enable Snapping and Snap Value: enables or disables automatic grid snapping for gameObjects, and
sets the grid snapping value (1 is 1 unit, 0.5 is half, etc...)

Smart Parent Renaming: enables or disables parent renaming on regrouping items. If disabled, SQO-
LI will not try to detect a pattern in the selected GameObjects and set the default name for the parent,
which is “PLEASE RENAME”.

Parent Placing: if enabled, the parent will be placed on the average position of every selected Game-
Objects on regrouping.

Session Time: Use this to set the session time length (example: 0.5 is half an hour).

Index

The index of the utility window is just
a list of useful keyboard shortcuts for
Unity.
Sorry, no revolutionnary feature here,
just a plain, good old tip list.

Page 6 of 18© Grégoire Meyer

Multiple tags per GameObject
This feature was very demanded when I began
developing Sigian. It allows a gameObject to
have multiple tags, and to look for them directly
in code, or in a wizard.
Previously, this was a standalone tag system,
but in Sigian 1.1.5 I merged it with the Unity tag
system, so it would be easier to use and more
robust.

To use this tag system, you must add the “Sigian
Tag Component” component on a gameObject.
Once this is done, you can directly add or remove
tags via the tag field and the “Add Tag” button.
Eveything is saved in a tag manager, and you will
be notified when it is created (usually at the be-
ginning of a project).

Sticky Notes on Hierarchy
This feature is very useful for teamwork, and for
personal reminders. It simply allows you to high-
ligh gameObjects in the hierarchy, and attach
messages on them, choosing from your own
presets (via a separate tool). The sticky notes are
saved, there is one save file per scene (untitled
scenes don’t get saved), so it will also work with
source control solutions.

To put a sticky note, just press the “+” button
next to a selected gameobject on the hierarchy.
A dropdown menu will appear. “Clear Notes”
means no note, “Manage sticky notes...” opens
the preset tool (see below).

Page 7 of 18© Grégoire Meyer

Chapter 2 : Wizards

[Insert Harry Potter joke here]

The wizards are a key feature of SQOLI, especially for level designers. There are 4 of them, each de-
signed for time saving. In this chapter they will be explained in depth.

New in version 1.1.5, this wizard has been entirely remade and now supports Sigian tag system. You
can select all gameObjects of at most 9 tags for Unity tag system, 3 tags for Sigian tag system. You
can add/remove tags from your selection with the “Add tag” and “Remove Tag” buttons

Use this wizard to quickly change the tag and/or layer of all the GameObjects of your selection.
Useful for modifying quickly multiple gameObjects.

Again, this is a very simple wizard, yet it is time-saving.

It is a very simple wizard, meant to be quickly
opened and quickly closed.
To open it, simply press “Open Select All of
Tags Wizard” button on the Utility Window.

Select all of Tags

Change Tag or Layer

Page 8 of 18© Grégoire Meyer

Offset Calculator

Spline Creator and Builder

This wizard is very helpful to get the offset between 2 GameObjects of your choice. For example, if
you are creating a modular generation system (with same-sized chunks), you can vertex-snap them,
get the offset, paste it in your code and get a seamless transition between chunks.

To open it, just press the “Calculate Offset” button in the Utility Window.

By far the most complex wizard, and perhaps feature, of SQOLI.
Splines are a type of curve you can edit in 3D. They use the mathematical concept of Bezier curves,
and derivatives.

You can create a Spline by pressing the “Create Spline” button in the Utility Window. When selected,
the inspector will display several buttons.

Click “Calculate Offset” and you will get this screen:

You can then copy/paste the
vector3 in your code. You can
also make a new offset calcula-
tion, or close the wizard.

Page 9 of 18© Grégoire Meyer

The Loop toggle decides if this Spline is a loop.
There are 2 types of points in the Spline: major points (in red, bigger), which determine the position of
the curve, and the minor (yellow, smaller), which determine the orientation the curve will take at the
associated major point.
Each major point is linked to 2 minor points.

There are 3 Modes for each point of the curve: Free, where there is no limitation, Aligned, where the
2 minor points are aligned with each other (but not distance, which allows for more asymmetrical
curves), and Mirrored, where the 2 minor points are aligned and at the same distance from the major
point, allowing for more harmonious curves.

The Add Curve button adds 1 major point and 2 minor points at the end of the curve, allowing to make
more complex curves.

The Remove last Curve button does exactly the opposite: it deletes the last 3 points of the curve.

Disclaimer: originally, it was planned to make a Spline Follower Wizard as well, but Cinemachine arrived
on Unity, so it became more or less deprecated.

The Spline Builder wizard allows you to automatically place prefabs on a Spline, aligned with the curve
direction or not. You can also easily tweak the spacing between objects.

To build a Spline, simply press the “Spline Builder” button in the Utility Window.

If you have only a Spline selected, you will be able to move on. However, if you don’t you will have to
specify which Spline you want to build in the wizard.

With enough training, you can
easily make harmonious curves.

Spline Builder

Page 10 of 18© Grégoire Meyer

The Look Forward toggle decides if the instanciated objects are aligned with curve direction.
The Frequency is the number of times the objects will be instanciated.
The Items list is where you put the prefabs you want. They will be instanciated in order.

Finally, you will have a Build Spline button, which will build the Spline. You will then have a tweaking
menu for you to modify the spacing between objects, change the frequency, etc…
Click “Apply Tweaks and Go” to close the wizard.

If you want to tweak the Spline after, simply open again the Spline Builder
wizard, builder data is saved for each Spline in the SplineData component.

Page 11 of 18© Grégoire Meyer

Chapter 3 : Coding
This is the chapter where the coding features that SQOLI brings are detailed. Nearly every feature is
explained with a practical example, except for the really simple ones.

In order to use SQOLI coding features, you must include the Sigian namespace at the beginning of
every script you plan to use them. You can do this just by typing this at the top of your script:

Structs are a type of data you can declare as a variable, like a GameObject or a Sprite. They don’t need
to be constructed, though they can be.

SQOLI features 3 brand new structs, thought for either improving work efficiency, or simplifying
complex process.

After declaring a MinMax, you can edit its properties with the .value, the .min, the .max and the
.breakIfError commands.

MinMax is a struct composed of 3 floats: a minimum, a maximum, a value, and a boolean,
breakIfError. The value is clamped between the min and the max, and breakIfError determines if the
script is stopped when the value tries to go beyond limits.

This struct is useful for making a health system for a player, for example, or an upgradable stat.

The MinMax struct can be declared and/or constructed in 4 ways:

A class being constructed

A few examples on how you can edit MinMax
properties

Structs

MinMax

Page 12 of 18© Grégoire Meyer

You can get elements of the list at a given index (if you couldn’t, what would be the point of a List after
all?).

Behind this barbaric name, hides a very useful feature.

Normally, you cannot reorder arrays and Lists in the editor when you declare them public. Now, you
can with the SigianReorderableGameObjectsList struct, and more precisely its custom Prop-
ertyDrawer. It behaves just like a List<GameObject>, but you can reorder the elements in the editor
when you declare it public. You can also add and delete elements directly in the inspector.

This struct is meant to be public. If you want a private list or array, just use List<> or array[].

The MinMax struct features
a custom PropertyDrawer, so
basically when you declare
it public, you will be able to
modify it directly in the
Inspector.

Why only GameObjects when a
List can do any type of data?
Complex, yet short answer:
Unity doesn’t allow generic type
serialization. And GameObject
is the most flexible type, since
you can GetComponent<>() after.

Finally the last function is the SetToRatio(float)
void. It sets the value between min and max at the ratio
specified. For example, .SetToRatio(0.5f) will set
the value halfway between the min and the max.

You will get this interface, featuring a
slider and 3 float fields for manual input.

Yes, there is only one code instruc-
tion, but this struct is meant to be
used mostly in the Inspector.

SigianReorderableGameObjectList

There are also a few functions (voids) for quick settings. The .SetToMin() and
the .SetToMax() commands set the value respectively to the minimum and the
maximum of the MinMax.

The MinMaxVector command returns the minimum and the maximum as a Vector2, which may be
useful.

Page 13 of 18© Grégoire Meyer

SigianEvent

Delegate events are a relatively complex feature for a newbie, and is not very intuitive (but then again,
programming is not very intuitive in itself).
With the SigianEvent struct, you can create events more easily, at a cost of flexibility.

SigianEvents must always be constructed with an argument (a dummy boolean), and you can only
add parameterless voids in it.

You can “subscribe” voids to the SigianEvent with the Add() command, “unsubscribe” them with
the Remove command, clear the SigianEvent from all voids with the Clear() command, and finally
you can activate all the voids at once with the Fire() command.

Basically, an extension method is a free DLC for data types. I don’t know how to explain it better. Sorry.

OK let’s take an example. GetRandom is an extension method for arrays and lists (of any type), that
returns a random element from this array or list.

Output: test1, test2.

Unlike the 2 other structs, SigianEvent
has no property drawer, meaning every
editing is made by code.
Sorry not sorry.

You get the concept? Good.

Extension methods

Page 14 of 18© Grégoire Meyer

So now is the part where I explain every extension method available in SQOLI. For clarity, I’m going to
regroup them by the type of data they extend (or the “base game”, to keep going with the DLC meta-
phor).

Please note: Each of these have a brief description in the code editor itself, thanks to some XML stuff.
Also, please use Visual Studio.

GetRandom() : returns a random element from this array or List. (explained previously)

Contains(element) : a boolean
that returns true if the element of type
T is contained within this array. Lists
have this feature natively.

IsConsistent() : a boolean that re-
turns true if every element from this Ar-
ray or List is the same.

IsNullOrEmpty() : a boolean that re-
turns true if this array or List is null or
empty.

Array (any type) and/or Lists (any type)

Page 15 of 18© Grégoire Meyer

Shuffle() : shuffles this array or List.
Useful for… stuff, I guess.

Push(T[] array or List<T>) : Push-
es, or merges 2 arrays or Lists. It will re-
sult in a bigger array or list, elements will
be kept in the same order, and the array
in parameter will be put at the end of this
array.

WordCount() : returns the num-
ber of words in this string.

IsNumeric() : returns true if
this string is composed exclu-
sively of numbers.
Bonus, how to con-
vert a string into a float
(natively supported).

Append() : adds a string at the end of this
string, with a space.

IsNullOrEmpty() : basically the same as the one for arrays and Lists. Works
exactly in the same way, no picture needed.

Strings

Page 16 of 18© Grégoire Meyer

ContainsChar(char) : a boolean that re-
turns true if this string contains a given
character.

IsEven() : a boolean that returns true if this
int is even.

IsMultipleOf(int) : a boolean that re-
turns true if this int is a multiple of the given
number.

GenerateRandomSeed(int) : generates a
random seed of numbers, of a given length.

Ints

Page 17 of 18© Grégoire Meyer

Bools

GameObjects

Transforms

DiceRoll(float) : a boolean that returns true or
false at a given probability. For example, 0.5 will
grant a 50/50 chance to return true, 0.1 a 10%
chance, etc…

longForward() : just a longer version of transform.forward, no picture needed really.

longUp() : just a longer version of transform.up, no picture needed.

longRight() : just a longer version of transform.right, no picture needed.

HasComponent(typeof(Type)) : a boolean that
returns true if this GameObject has at least one
component of the given type. Remember to put
typeof() in the parameter.

And that’s all the extension methods available in SQOLI!
There are also a few experimental extension methods, that are in the Sigian.Experimental name-
space. I won’t detail them here, but you are free to use them at your peril, since they are largely un-
tested and/or resource hungry.

Just to tease you a bit, there is a method for converting numbers into letters, one for purging a Game-
Object from all its components and one for converting numbers into hours/minutes/seconds.

Okay, that’s it for the coding chapter. These features were designed primarily for my needs as a game
designer, so they might not help you if you are making neural networks or an MMO backend. But if
they help you prototype shitty games faster, it’s good for me!

Page 18 of 18© Grégoire Meyer

Chapter 4 : Architecture and Asset
Post Processor

Conclusion

SQOLI features a pre-made project architecture, so it is best to use it at the very beginning of a proj-
ect. It features folders for everything needed in a 3D project.

Nomenclature is clear and hierarchy is designed to be easily understood. The only touchy folders are
the Editor, EditorResources, and the [Sigian] folder. They all contain the scripts used by SQOLI to work
its magic. Please refrain from deleting files from these folders.

Don’t worry, the plugin won’t impact build size and process, as only the needed scripts will be kept in
the build (such as the structs and extension methods). UtilityWindow and Wizards will automatically
be ejected from the build, as they are in the Editor folder.

With the pre-made architecture comes another cool feature: automatic asset process on import. If a
certain type of asset is imported in a certain folder, it will be automatically be treated to be optimized.

For example, images imported in the UI folder will be optimized for 2D/UI (by changing Texture Type),
whereas images imported in the Normal Map folder will be optimized for normal maps, saving you a
few clicks for nothing.

The same goes for sounds, depending on if you put them in the SFX folder or the Music folder, they
won’t be compressed the same, resulting in increased performance and better quality. However,
sound recompression is quite long in Unity, so sound importing is significantly longer than usual
(around 20 seconds).

Again, thank you for installing Sigian Quality of Life Improvements. If you know anyone that might
need it, or find any use of it, please share it to them, that means a lot to me.
SQOLI is bound to be updated, as I use is on personal projects and add features as I feel the need for
them.

If you publish a project using SQOLI, no need to credit me, simply put “Thanks to the Sigian plugin”,
that would make me really happy. Well, you can credit me if you want, I won’t mind ;)

Thank you again, and remember: you’re awesome.

Cheers,
Grégoire Meyer

Asset Post Processor

